STAT209: Generalized Linear Models

Theory, methods, and applications of generalized linear statistical models; review of linear models; binomial models for binary responses (including logistical regression and probit models); log-linear models for categorical data analysis; and Poisson models for count data. Case studies drawn from social, engineering, and life sciences. Prerequisite(s): STAT 205 or STAT 205B; and STAT 206B. Enrollment is restricted to graduate students.

5 credits

Year Fall Winter Spring Summer

Formerly AMS 0274

While the information on this web site is usually the most up to date, in the event of a discrepancy please contact your adviser to confirm which information is correct.