STAT205: Introduction to Classical Statistical Learning

Introduction to classical statistical inference. Random variables and distributions; types of convergence; central limit theorems; maximum likelihood estimation; Newton-Raphson, Fisher scoring, Expectation-Maximization, and stochastic gradient algorithms; confidence intervals; hypothesis testing; ridge regression, lasso, and elastic net. Prerequisite(s): STAT 203; or STAT 131 and STAT 132. Enrollment is restricted to graduate students; undergraduates may enroll by permission of the instructor if they've completed STAT 131 and STAT 132 (subject to instructor verification). 

5 credits

Year Fall Winter Spring Summer
2024-25
2020-21
Comments

Formerly AMS 205

While the information on this web site is usually the most up to date, in the event of a discrepancy please contact your adviser to confirm which information is correct.