CMPS142: Machine Learning and Data Mining
Introduction to machine learning algorithms and their applications. Topics include classification learning, density estimation and Bayesian learning regression, and online learning. Provides introduction to standard learning methods such as neural networks, decision trees, boosting, and nearest neighbor techniques. Prerequisite(s): course 101, Mathematics 23A, and Applied Mathematics and Statistics 131 or Computer Engineering 107.5 credits
Year | Fall | Winter | Spring | Summer |
---|
While the information on this web site is usually the most up to date, in the event of a discrepancy please contact your adviser to confirm which information is correct.