AMS241: Bayesian Nonparametric Methods

Theory, methods, and applications of Bayesian nonparametric modeling. Prior probability models for spaces of functions. Dirichlet processes. Polya trees. Nonparametric mixtures. Models for regression, survival analysis, categorical data analysis, and spatial statistics. Examples drawn from social, engineering, and life sciences. Prerequisite(s): course 207. Enrollment restricted to graduate students.

5 credits

Year Fall Winter Spring Summer

While the information on this web site is usually the most up to date, in the event of a discrepancy please contact your adviser to confirm which information is correct.